The manufacturer Glock advises against using lead bullets (meaning bullets not covered by a copper jacket) in their polygonally rifled barrels, which has led to a widespread belief that polygonal rifling is not compatible with lead bullets. Firearms expert and barrel maker, the late Gale McMillan, has also commented that lead bullets and polygonal rifling are not a good mix.
Furthermore, Dave Spaulding, well-known gun writer, reported in the February/March 2008 issue of Handguns Magazine that when he queried H&K about their polygonally rifled barrels that they (H&K) commented: "It has been their experience that polygonal rifling will foul with lead at a greater rate than will conventional rifling."
One suggestion of what the "additional factor involved in Glock's warning" might be is that Glock barrels have a fairly sharp transition between the chamber and the rifling, and this area is prone to lead buildup if lead bullets are used. This buildup may result in failures to fully return to bttery, allowing the gun to fire with the case not fully supported by the chamber, leading to a potentially dangerous case failure. However, since this sharp transition is found on most autopistols this speculation is of limited value. The sharp transition or "lip" at the front of the chamber is required to "headspace" the cartridge in most autopistols.
Leading is the buildup of lead in the bore that happens in nearly all firearms firing high velocity lead bullets. This lead buildup must be cleaned out regularly, or the barrel will gradually become constricted resulting in higher than normal discharge pressures. In the extreme case, increased discharge pressures can result in a catastrophic incident.
A number of advantages are claimed by the supporters of polygonal rifling. These include:
- Not compromising the barrel's thickness in the area of each groove as with traditional rifling.
- Providing a better gas seal around the projectile as polygonal bores tend to have a slightly smaller bore area, which translates into more efficient use of the combustion gases trapped behind the bullet, slightly greater (consistency in) muzzle velocities and slightly increased accuracy.
- Less bullet deformation, resulting in reduced drag on the bullet when traveling through the barrel which helps to increase muzzle velocity.
- Reduced buildup of copper or lead within the barrel which results in easier maintenance characteristics.
- Prolonged barrel life.
The term "polygonal rifling" is fairly general, and different manufacturers employ varying polygonal rifling profiles. H&K, CZ and Glock use a female type of polygonal rifling similar to the bore shown above right. This type has a smaller bore area than the male type of polygonal rifling designed and used by Lothar Walther. Other companies such as Noveske (Pac Nor) and LWRC use a rifling more like the conventional rifling with both of the lands sides being sloped but has a flat top and defined corners, this type of rifling is more of a canted land type of rifling than polygonal rifling.
SOURCE:
http://en.wikipedia.org/wiki/Polygonal_rifling